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Abstract. The aim of this paper is to establish similar results to that of G.
Bennett[2] and C. P. Niculescu[4] in the context of functions which are
3-convex/concave at a point.
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1. INTRODUCTION

A vast theory developed in the study of convex functions, may be readily applied to most
significant topics in real analysis and economics. In past recent years, a rapid development
has experienced in the theory of convex functions. This can be accredited to several causes,
two of which are as follows: First, so many areas in modern analysis directly or indirectly
involves application of convex functions. Second, convex functions have huge impact on
the theory of inequalities and several important inequalities are out-turn of the application
of convex functions (see [6]).
In [2], G. Bennett presented some consequences of an inequality describing the behavior
of convex functions with respect to a mass distribution. Later, C. P. Niculescu proved an
abstract version of this result([4]), which is shown in the next theorem.

Theorem 1.1. [4] Let I is an interval carrying a positive Borel measure` andA ; B; C
are three disjoint compact subintervals ofI of positive measure. Then

`(B) = `(A) + `(C) (1. 1)

and ∫

B
αd`(α) =

∫

A
αd`(α) +

∫

C
αd`(α); (1. 2)

give a necessary and sufficient condition under which the inequality
∫

B
f(α)d`(α) ≤

∫

A
f(α)d`(α) +

∫

C
f(α)d`(α). (1. 3)

is valid for every convex functionf : I → R.
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Definition 1.2. (see[5], p. 179). Any real Borel measurèon an intervalI such that
`(I) > 0 and

∫

I
f(α)d`(α) ≥ 0 for every nonnegative convex function f : I → R.

is called a Steffensen-Popoviciu measure.

A brief description of this concept is given in the following result, independently due to
T. Popoviciu [6] and A. M. Fink [3]:

Lemma 1.3. Suppose that̀ be a real Borel measure on an intervalI with `(I) > 0. Then
` is a Steffensen-Popoviciu measure iff the following condition of endpoints positivity,

∫

I∩(−∞,t]

(t− α)d`(α) ≥ 0 and

∫

I∩[t,∞)

(α− t)d`(α) ≥ 0

holds for everyt ∈ [a, b].

Theorem 1.4. (see[5], p. 184-185, for details) Let̀ is a Steffensen- Popoviciu measure
on an intervalI. Then the inequality

f(b`) ≤ 1
`(I)

∫

I
f(α)d`(α)

holds for every continuous convex functionf on I, hereb` = 1
`(I)

∫
I αd`(α) represents

the barycenter of̀.

Definition 1.5. [4] Any real Borel measurèon an intervalI such that̀ (I) > 0 and
∫

I
f(α)d`(α) ≥ 0 for every nonnegative concave function f : I → R.

is called a dual Steffensen-Popoviciu measure.

Theorem 1.6. Theorem 1.1 even works if` is a real Borel measure onI andA, B, C
are three disjoint subintervals ofI such that the restriction of̀ to each of the intervalsA
andC is a Steffensen-Popoviciu measure and the restriction of` to B is a dual Steffensen-
Popoviciu measure.

Now, we consider the inequality of G. Bennett for new class of functions in following
section.

2. MAIN RESULTS

In [1], I. A. Baloch, J. Pecaric, M. Praljak defined a new class of functions which is
defined as follow:

Definition 2.1. Let I be a non-degenerate interval inR and c an interior point of it. A
functionf : I → R is called3-convex function at pointc (respectively3-concave function
at point c) if there exists a constantK such that the functionF (α) = f(α) − K

2 α2 is
concave (resp. convex) onI ∩ (−∞, c] and convex (resp. concave) onI ∩ [c,∞).

A property that explains the name of the class is the fact that a function is3-convex on
an interval if and only if it is3-convex at every point of the interval (see [1]).
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Theorem 2.2. LetI is an interval carrying a positive Borel measure` andA ; B; C; P ;
Q; R are six disjoint compact subintervals ofI of positive measure such that

`(B) = `(A) + `(C) ; `(Q) = `(P) + `(R) (2. 4)

and
∫

B
αd`(α) =

∫

A
αd`(α)+

∫

C
αd`(α) ;

∫

Q
βd`(β) =

∫

P
βd`(β)+

∫

R
βd`(β). (2. 5)

and alsoc ∈ I◦ is such that

max{right end points of interval A,B, C}
≤ c ≤

min {left end points of interval P,Q,R} (2. 6)

Now, if
∫

A
α2d`(t) +

∫

C
α2d`(α)−

∫

B
α2d`(α) =

∫

P
β2d`(β) +

∫

R
β2d`(β)−

∫

Q
β2d`(β),

(2. 7)
then following inequality

∫

A
f(α)d`(α) +

∫

C
f(α)d`(α)−

∫

B
f(α)d`(α)

≤
∫

P
f(β)d`(β) +

∫

R
f(β)d`(β)−

∫

Q
f(β)d`(β) (2. 8)

holds for every3-convex functionf : I → R at a pointc.

Proof. Sincef is 3-convex function at pointc ∈ I◦, then we have a constantK such that
F (α) = f(α) − K

2 α2 is concave onI ∩ (−∞, c]. Therefore, forA ; B; C, three disjoint
compact subintervals ofI ∩ [c,∞) of positive measure, so by reverse of the inequality
( 1. 3 ), we have

0 ≥
∫

A
F (α)d`(α) +

∫

C
F (α)d`(α)−

∫

B
F (α)d`(α)

=
∫

A
f(α)d`(α) +

∫

C
f(α)d`(α)−

∫

B
f(α)d`(α)

− K

2
( ∫

A
α2d`(α) +

∫

C
α2d`(α)−

∫

B
α2d`(α)

)

Also, by using the fact thatF (β) = f(β)− K
2 β2 is convex onI ∩ [c,∞). Therefore, for

P ; Q; R, three disjoint compact subintervals ofI ∩ [c,∞) of positive measure, so by use
of the inequality ( 1. 3 ), we have

0 ≤
∫

P
F (β)d`(β) +

∫

R
F (β)d`(β)−

∫

Q
F (β)d`(β)

=
∫

P
f(β)d`(β) +

∫

R
f(β)d`(β)−

∫

Q
f(β)d`(β)

− K

2
( ∫

P
β2d`(β) +

∫

R
β2d`(β)−

∫

Q
β2d`(β)

)
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From above, we have
∫

A
f(α)d`(α) +

∫

C
f(α)d`(α)−

∫

B
f(α)d`(α)

− K

2
( ∫

A
α2d`(α) +

∫

C
α2d`(α)−

∫

B
α2d`(α)

)

≤ 0 ≤

∫

P
f(β)d`(β) +

∫

R
f(β)d`(β)−

∫

Q
f(β)d`(β)

− K

2
( ∫

P
β2d`(β) +

∫

R
β2d`(β)−

∫

Q
β2d`(β)

)
.

So,
∫

A
f(α)d`(α) +

∫

C
f(α)d`(α)−

∫

B
f(α)d`(α)

− K

2
( ∫

A
α2d`(α) +

∫

C
α2d`(α)−

∫

B
α2d`(α)

)

≤
∫

P
f(β)d`(β) +

∫

R
f(β)d`(β)−

∫

Q
f(β)d`(β)

− K

2
( ∫

P
β2d`(β) +

∫

R
β2d`(β)−

∫

Q
β2d`(β)

)
. (2. 9)

By using ( 2. 7 ), we get ( 2. 8 ).

Remark 2.3. From the proof of the Theorem 2.2, we have
∫

A
f(α)d`(α) +

∫

C
f(α)d`(α)−

∫

B
f(α)d`(α)

≤ K

2
( ∫

A
α2d`(α) +

∫

C
α2d`(α)−

∫

B
α2d`(α)

)
(2. 10)

and
∫

P
f(β)d`(β) +

∫

R
f(β)d`(β)−

∫

Q
f(β)d`(β)

≥ K

2
( ∫

P
β2d`(β) +

∫

R
β2d`(β)−

∫

Q
β2d`(β)

)
(2. 11)

So under assumption ( 2. 7 ), we can get a improvement of ( 2. 8 ) as follow
∫

A
f(α)d`(α) +

∫

C
f(α)d`(α)−

∫

B
f(α)d`(α)

≤ K

2
( ∫

A
α2d`(α) +

∫

C
α2d`(α)−

∫

B
α2d`(α)

)

{
=

K

2
( ∫

P
β2d`(β) +

∫

R
β2d`(β)−

∫

Q
β2d`(β)

)}

≤
∫

P
f(β)d`(β) +

∫

R
f(β)d`(β)−

∫

Q
f(β)d`(β) (2. 12)
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Now, we give next result which weakens the assumption ( 2. 7 ) such that inequality
( 2. 8 ) holds under this new condition.

Theorem 2.4. Suppose thatI is an interval carrying a positive Borel measure` andA ;
B; C; P ; Q; R are six disjoint compact subintervals ofI of positive measure such that
( 2. 4 ) and ( 2. 5 ) hold with

a = max{right end points of interval A,B, C}
≤ min{left end points of interval P,Q,R} = b (2. 13)

andf → R is 3-convex at a pointc for somec ∈ [a, b]. Then if
(a)

f ′′−(a) ≥ 0
and∫

A
α2d`(α) +

∫

C
α2d`(α)−

∫

B
α2d`(α)

≤
∫

P
β2d`(β) +

∫

R
β2d`(β)−

∫

Q
β2d`(β)

or
(b)

f ′′+(b) ≤ 0
and∫

A
α2d`(α) +

∫

C
α2d`(α)−

∫

B
α2d`(α)

≥
∫

P
β2d`(β) +

∫

R
β2d`(β)−

∫

Q
β2d`(β)

or
(c)

f ′′−(a) < 0 < f ′′+(b) and f is 3− convex,

then ( 2. 8 ) holds.

Proof. The idea of proof is similar to proof of Theorem 2.2. Hence, by proceeding as in
the proof of Theorem 2.2. From the inequality 2. 9 , we have

K

2
[( ∫

P
β2d`(β) +

∫

R
β2d`(β)−

∫

Q
β2d`(β)

)

− ( ∫

A
α2d`(α) +

∫

C
α2d`(α)−

∫

B
α2d`(α)

)]

≤
∫

P
f(β)d`(β) +

∫

R
f(β)d`(β)−

∫

Q
f(β)d`(β)

− ( ∫

A
f(α)d`(α) +

∫

C
f(α)d`(α)−

∫

B
f(α)d`(α)

)

Now, due to the concavity ofF onI ∩ (−∞, c] and convexity ofF onI ∩ [c,∞), so for
every distinct pointsαj ∈ I ∩ (−∞, a] andβj ∈ I ∩ [b,∞), j = 1, 2, 3, we have

[α1, α2, α3]f ≤ K ≤ [β1, β2, β3]f

Lettingαj ↗ a andβj ↘ b, we get (if exists)

f ′′−(a) ≤ K ≤ f ′′+(b)
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Therefore, if assumptions (a) or (b) holds, then

K

2
[( ∫

P
β2d`(β)+

∫

R
β2d`(β)−

∫

Q
β2d`(β)

)−( ∫

A
α2d`(α)+

∫

C
α2d`(α)−

∫

B
α2d`(α)

)]

is positive and we conclude the result. If the assumption (c) holds, thef ′′− is left contin-
uous,f ′′+ is right continuous, they are both non-decreasing andf ′′− ≤ f ′′+. Therefore, there
existsc̃ ∈ [a, b] such thatf with associated constant̃K = 0 and again, we can deduce the
result.

Remark 2.5. Again from the proof of Theorem 2.4, we obtain the inequalities ( 2. 10 ) and
( 2. 11 ). Now, under assumption (a), (b) or (c) of Theorem 2.4,K is positive or negative
or zero respectively due to argument discussed in the proof. Therefore, we get a better
improvement of ( 2. 8 ) then ( 2. 12 ) in this case as follow

∫

A
f(α)d`(α) +

∫

C
f(α)d`(α)−

∫

B
f(α)d`(α)

≤ K

2
( ∫

A
α2d`(α) +

∫

C
α2d`(α)−

∫

B
α2d`(α)

)

≤ K

2
( ∫

P
β2d`(β) +

∫

R
β2d`(β)−

∫

Q
β2d`(β)

)

≤
∫

P
f(β)d`(β) +

∫

R
f(β)d`(β)−

∫

Q
f(β)d`(β) (2. 14)

Under the assumption of Theorem 2.2 withf : I → R is 3-concave at pointc ∈ I◦, the
reverse of inequality ( 2. 8 ) holds. Now, we give only the statement of the theorem with
weaker condition which can be proved in similar way under which the reverse of inequality
( 2. 8 ) holds forf : I → R is 3-concave at pointc ∈ I◦.
Theorem 2.6. Suppose thatI is an interval carrying a positive Borel measure` andA ;
B; C; P ; Q; R are six disjoint compact subintervals ofI of positive measure such that
( 2. 4 ) and ( 2. 5 ) hold with

a = max{right end points of interval A,B, C}
≤ min{left end points of interval P,Q,R} = b (2. 15)

andf : I → R is 3-concave at a pointc for somec ∈ [a, b]. Then if
(a)

f ′′−(a) ≤ 0

and
∫

A
α2d`(α) +

∫

C
α2d`(α)−

∫

B
α2d`(α)

≥
∫

P
β2d`(β) +

∫

R
β2d`(β)−

∫

Q
β2d`(β)

or
(b)

f ′′+(b) ≥ 0
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and
∫

A
α2d`(α) +

∫

C
α2d`(α)−

∫

B
α2d`(α)

≤
∫

P
β2d`(β) +

∫

R
β2d`(β)−

∫

Q
β2d`(β)

or
(c)

f ′′−(a) < 0 < f ′′+(b) and f is 3− concave,

then reverse of ( 2. 8 ) holds.

Remark 2.7. Similarly as in Remark 2.5, we obtain the reverse of inequalities ( 2. 10 )
and
( 2. 11 ) from the proof of Theorem 2.6. Now, due the convexity ofF on I ∩ (−∞, c]
and concavity ofF on I ∩ [c,∞), so for every distinct points̃αj ∈ I ∩ (−∞, a] and
β̃j ∈ I ∩ [b,∞), j = 1, 2, 3., we have

[α̃1, α̃2, α̃3]f ≥ K ≥ [β̃1, β̃2, β̃3]f

Lettingα̃j ↗ a andβ̃j ↘ b, we get (if exists)

f ′′−(a) ≥ K ≥ f ′′+(b)

Now, under assumption (a) or (b) or (c) of Theorem 2.6,K is negative or positive or zero
respectively due to argument discussed above. Therefore, we get a better improvement in
this case as follow

∫

A
f(α)d`(α) +

∫

C
f(α)d`(α)−

∫

B
f(α)d`(α)

≥ K

2
( ∫

A
α2d`(α) +

∫

C
α2d`(α)−

∫

B
α2d`(α)

)

≥ K

2
( ∫

P
β2d`(β) +

∫

R
β2d`(β)−

∫

Q
β2d`(β)

)

≥
∫

P
f(β)d`(β) +

∫

R
f(β)d`(β)−

∫

Q
f(β)d`(β) (2. 16)

Theorem 2.8. Suppose thatI is an interval carrying a Borel measurèandA ; B; C; P
; Q; R are six disjoint subintervals ofI with the restriction of̀ to each of the intervals
A, C,P andR is a Steffensen-Popoviciu measure and the restriction of` to B andQ is a
dual Steffensen-Popoviciu measure such that

`(B) = `(A) + `(C) ; `(Q) = `(P) + `(R) (2. 17)

and∫

B
αd`(α) =

∫

A
αd`(α)+

∫

C
αd`(α) ;

∫

Q
βd`(β) =

∫

P
βd`(β)+

∫

R
βd`(β). (2. 18)

and alsoc ∈ I◦ is such that

max{right end points of interval A,B, C}
≤ c ≤

min{left end points of interval P,Q,R} (2. 19)
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Now, if∫

A
α2d`(α) +

∫

C
α2d`(α)−

∫

B
α2d`(α) =

∫

P
β2d`(β) +

∫

R
β2d`(β)−

∫

Q
β2d`(β),

(2. 20)
then following inequality

∫

A
f(α)d`(α) +

∫

C
f(α)d`(α)−

∫

B
f(α)d`(α)

≤
∫

P
f(β)d`(β) +

∫

R
f(β)d`(β)−

∫

Q
f(β)d`(β) (2. 21)

holds for everyf : I → R 3-convex function at a pointc.

Remark 2.9. The statement of Theorem 2.8 can be weakened under the similar setting as
given in Theorem 2.4 such that the inequality ( 2. 21 ) holds.

3. CONCLUSION

In this paper, we have studied the class of 3-convex/concave functions at a point which
is larger then that of 3-convex/concave functions and have developed some interesting
techniques for this new class. Using these techniques, we have established similar results
to G. Bennett’ inequality for this class. Methods developed and results proved in this paper
may stimulate further research in this field.
The interested researchers are encouraged to find the particular examples of the results
presented in this paper.
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